Adaptive Metrology Solution for Aircraft FAL Automation
Robert Flynn and Schuyler Horky, Electroimpact Inc.

An adaptive, flexible tool and a novel HMI enable rapid, accurate, deskilled laser tracker assisted aircraft joins

Solution Overview
An automated solution for a business jet Final Assembly Line (FAL), integrating metrology with kinematics to create a pseudo closed loop join processes run by custom HMI software communicating with laser trackers and PLC hardware, while providing operators with task-by-task instruction lists, requiring minimal instrument or program training.

Features
- Nearly closed loop deskills complex metrology operations
- Novel and universal HMI requires minimal operator training
- Highly customizable HMI workflows allow customer-driven join-process revisions
- Reduces build time through automated measurement and adjustment systems
- Supports multiple part variants through data package importation
- Increases join accuracy and precision through adaptive tooling

Typical Working Cell Configuration

Total FAL System Elements
- 3 Working Cells
- 3 HMI Computers
- 3 Seats Spatial Analyzer
- 3 Seats Custom HMI
- 8 Laser trackers
- 4 PLCs
- 28 Multi-axis positioners

Adaptive Tooling Approach
- Adapts to part-specific manufacturing differences
- Accepts data from component manufacturers to improve fits
- Enables in-process best-fits
- Minimizes alignment deviations at point of assembly
- Optimizes join for compensation to individual part variations
- Adjusts to fit multiple aircraft variants in one tool
 - Long range variant
 - Standard range variant

Working Cell Configurations

Human Machine Interface Overview
All working cell join processes are executed through the HMI software, running on each cell computer. Each working cell has a set of automated procedures called workflows stored on the computer, which are loaded one at a time, and walk the operator through every working cell operation requiring laser trackers and/or positioners. Each workflow is comprised of a list of tasks, each containing a title, user instructions, a graphic, and an automation command. For each task, the operator follows any instructions that require manual execution and the HMI executes any specified automation command such as measuring a group of points with a tracker or sending a transformation matrix to the working cell PLC, then proceeding to the next task until all tasks in the workflow have been completed.

Features
- Strong graphical interface decreases join process training requirements
- Minimalistic layout maintains user focus on operation objectives
- Step by step instructions preserve task linearity in join processes during part adjustment
- Workflows written in Microsoft Excel allow for easy join process revision by customer
- Interfaces with New River Kneumatic Spatial Analyzer for metrology functionality
- Supports communication with multiple instruments and PLCs over TCP/IP
- Automation commands deskill metrology operations with automatic troubleshooting
- Data set importation enables compensation for part-to-part deviations

Workflow example

Achieved Join Accuracy
Join process accuracies were measured and recorded during technology development by inserting undersized pins through alignment holes, imperfect alignment resulting in a smaller allowable pin size. For the wing-wing join, a mock-up wing with 4 pairs of alignment holes was used, to join accuracies of ±0.003" on the worst pair. For other joins types, similar accuracies were attained on the same order of magnitude.

Acknowledgements
East Coast Metrology partnered with Electroimpact to create many of the workflows used in development

For more information, contact Rob Flynn RobF@electroimpact.com